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Abstract 
A continuous probability model with three parameters named Modified Extended Kumaraswamy 
Exponential distribution is established using Extended Kumaraswamy Exponential distribution as base 
distribution through adding one more scale parameter.  Expressions for a number of functions, including 
the probability density function, skewness and kurtosis, survival function, hazard rate function, and 
distribution function, have been introduced in this context. Probability density curves and Hazard rate 
curves displayed. The hazard rate curves exhibit a monotonic increase, followed by a decrease, a period of 
constancy, constancy followed by an increase, and a J-shaped pattern across various parameter sets.  To 
assess the effectiveness of the developed model, we employed a real dataset on daily COVID-19 death 
counts in Nepal during the initial wave from January 23, 2020, to December 24, 2020. The model 
parameters were established using the techniques of least squares, maximum likelihood, and Cramer's-von 
Mises. To validate the model, we used Corrected Akaike's, Akaike's, Bayesian, and Hannan-Quinn 
Information Criteria. Furthermore, we utilized Q-Q and P-P plots for validation purposes. The goodness of
fit can be assessed using Cramer-von Mises, Anderson-Darling tests and Kolmogorov-Smirnov tests. It's 
worth noting that all of these analyses and assessments are carried out within the R programming 
language environment, leveraging its powerful statistical and graphical capabilities. This ensures a 
systematic and thorough exploration of the model's validity and fitness for the given data. 
Keywords: Corrected Akaike’s Information; COVID-19; Goodness of fit; Hazard rate function; New 
Kw-G family. 

 
1 Introduction 
Research and investigation are essential part of overall the fields. Development and updating is not possible without 

the research in all aspect. Today, research is being used social sciences. Data analysis, a vital research component, 

offers diverse techniques and tools found in literature for effective data interpretation. Statistical methods are widely 

used in data analysis for sampling, estimation, and drawing the inferences about the population parameters etc. 

Application of statistical tools in research has made easier to researchers getting quick, valid and reliable results. 

There are different tools available in statistics that have been used in research. One of the most important tools is the 

use of probability models. Numerous highly beneficial probability models in literature greatly aid data analysis, 

offering established and valuable tools for researchers. In many cases, the models available does not explain the all 

the properties of the data accurately. Sometimes we manipulate the data to make it suitable to fit a certain 

probability distribution. But manipulating data is one of the main causes of misleading results of the research. 

Researchers have introduced numerous novel probability models to enhance result accuracy. These new probability 

models try to analyze the data more precisely. In literature we can find different probability models. 

New probability models can be formulated by different methods. One of the approaches of formulating novel 

probability model is by using the family of probability distribution. The Lindley distribution family (Cakmakyapan 

& Gamze, 2016), Power Lindley-G family of distributions (Hassan & Nassr, 2019), and others, represent various 

distribution families. Chaudhary et al. (2022) introduced Inverse Exponentiated Odd Lomax Exponential 
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distribution using T-X family (Aljarrah et al., 2014) of distribution. Chaudhary et al. (2023) have also created the 

inverse exponential power distribution using the inverse transformation technique. Other method of formulating the 

new model of probability distribution is by modifying the existing probability model. Within the realm of literature, 

numerous adaptations of the Weibull distribution can be found, and one such adaptation is the Weibull distribution 

with two-parameter, which is articulated as follows:  

( , , ) exp[ ( , )]F x x �� � �� �             (1) 

The exponentiated Weibull distribution, presented by (Mudholkar & Srivastava,1993), emerges by modifying the 
Weibull distribution to yield various bathtub hazard rate functions. Modified Weibull (Lai et al., 2003) distribution 
is modified form of Weibull distribution as  

( ) exp[ .exp( )]bF x ax x��              (2) 

 Telee and Kumar (2023) have new probability model termed as developed modified the Generalized Exponential 

distribution by adding on shape parameter in Generalized Exponential distribution  introduced by (Gupta & Kundu, 

2001). In this article, we have modified the Extended Kumaraswamy Exponential (EKwE) Distribution, originally 

proposed by (Chaudhary et al., 2023) to create a new probability model termed as the Modified Extended 

Kumaraswamy Exponential (MEKwE) Distribution. The EKwE distribution was initially introduced using the New 

Kumaraswamy Generalized Family of Distributions (NKwG) framework, as outlined by (Tahir et al., 2020). The 

EKwE model is characterized by two parameters applied to a single continuous variable. The cumulative 

distribution function (CDF) for the New Kw-G family (NKwG) is established as follows:  

� �( ; )( ; , , ) 1 1 1 ( ; ) ; ( , , ) 0, 0G xF x G x x
���� � � � � � �

� �
� � � � � �� �

� �
                                      (3) 

The unique situation involving the New Kw-G family (NKwG) occurs when we assign the parameter θ a value of 1, 

like this: 

� �( ; )( ; , ) 1 ( ; ) ; ( , ) 0, 0G xF x G x x
��� � � � �� � � �                                                                        (4) 

The exponential distribution serves as the foundational function in eq. (4) to establish the EKwE model and its CDF 

is 

( ; ) 1 xG x e �� �� � where,   ( ; ) ; 0, 0�� ��� � �xG x e x                              (5)  

CDF of the EKwE model is defined in eq. (6) 

(1 )( ; , ) 1 ; 0, ( , ) 0
xx eF x e x

���� � � �
�� �� �� � � �� �

� �
                  (6)  

To introduce the proposed model, we have modified the model (6) by adding one more scale parameter α and the 

resulting CDF of the MEKwE is provided as 

� �� � .( ; ,  ,  ) 1 exp . (1 ) ; 0, ( , , ) 0x xF x xe e x
�� �� � � � � � ��� � � � � �              (7) 
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2 Model Analysis 
The suggested model MEKwE is described by eq. (7) as its PDF is 

� �� � 1(1 exp( ))( ) exp( ) (1 )(1 exp( )) 1 exp( (1 exp( ))) ; 0,( , , ) 0
xx xe x xf x e e x x x x xe x x

� �� � � ��� � � � � � � � � �
�� � �� � � � � � � � � � �    (8) 

2.1 Survival function 
Model’s survival function is given by expression (9) as 

� �. .( ) 1 1 exp [ (1 exp{ })] ;  0,  ( , , ) 0xS x xe x x
��� � � � �� � � � � � � �          (9)  

2.2 Failure rate function
The expression (10) provides the hazard rate function for the suggested model which is crucial for assessing the 
instantaneous failure probability at any given time, offering valuable insights into the model's reliability and 
potential risks over time.   

� �.

.

.

1 1
(1 exp ( )) (1 exp( ))

( ) exp( ) exp( ) (1 )(1 exp( )) { [1 exp( )]}

1 1 1 ; 0

x

x xxe x xe x

h x x x x x x e xe x

e e x

�

� �� �� � � �

�� � � � � � � �
� �

� � � � � �

� � � � � � � � �

� �� � � �� �� � � �� � � �� �
� � � �� �� �

         (10) 

  
 
Figure 1 depicts probability density curves and hazard rate curves for various parameter sets. Different shapes of the 
curves show that the proposed model may be flexible corresponding to the different type of real data sets 
 
 

 
 
 Figure 1: Density curve (on the left) and hazard curve (on the right) for MEKwE 
 
The hazard rate curves exhibit a monotonic increase, followed by a decrease, a period of constancy, constancy 
followed by an increase, and a J-shaped pattern across various parameter sets. Understanding these diverse hazard 
rate behaviors is crucial for accurate risk assessment and decision-making in different contexts. 

2.3 Reversed hazard rate function 
The suggested model's reversed failure rate function is articulated as follows: 

� �

� � � �
(1 exp( ))

1

( ) exp( ) exp( ) {1 exp( )}(1 )

             1 exp{ (1 exp( )} 1 exp{ (1 exp( ))} ; 0, ( , , ) 0

xxe x
rev

x x

h x x e x x x x

xe x xe x x

�� �

� �� �

�� � � � � �

� � � � � � �

� � �

� �

� � � � � �

� � � � � � � � � �
      (11) 
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2.4 Cumulative failure rate function 
Given is the cumulative failure rate function for the suggested model which illustrates the accumulated failure rate 
of the model over time. It provides a representation of how the failure rate increases as time progresses. 
 

(1 )( ) ln( ( )) ln 1 1 ; 0, ( , , ) 0
x xxe eH x S x e x

�� �� � � �
�� �

� �� �� �� � � � � � � �� �� �� �� �
          (12) 

 
2.5 Quantile function 
The quantile function serves as an alternative to the distribution function and can be employed to calculate various 
descriptive measures of the model. The model's quantile function is presented as 

� � � �1/1 ln 1 0; 0 1x xxe e p p� � �� �� � � � � �                           (13) 

2.6 Asymptotic properties  
Through confirming that 

0
limit ( ) limit ( )
x x

f x f x
� ��

� ,the density function's asymptotic behavior can be explored. If the 

model conforms to asymptotic properties, a modal value will be present. This can be verified by taking limits at the 

endpoints. 

� �� � 1(1 exp( ))
0 0

lim ( ) lim exp( ) (1 )(1 exp( )) 1 exp( (1 exp( ))) 0
xx xe x x

x x
f x e e x x x x xe x

� �� � � ��� � � � � � �
�� � �

� �
� � � � � � � � � �

      
  

� �� � 1(1 exp( ))lim ( ) lim exp( ) (1 )(1 exp( )) 1 exp( (1 exp( ))) 0
xx xe x x

x x
f x e e x x x x xe x

� �� � � ��� � � � � � �
�� � �

�� ��
� � � � � � � � � �

   
Ensuring that the density function maintains its characteristics under these conditions is crucial for confirming the 
reliability of the model. The existence of a modal value, supported by the fulfillment of asymptotic properties and 
verified through endpoint limits, enhances the robustness of the analysis and underscores the validity of the model's 
representation.  
 In this context, 

0
limit ( ) limit ( )
x x

f x f x
� ��

� . Consequently, the proposed model exhibits a modal value. To find the 

mode of the distribution, solve the equation ' ( ) 0f x � under the condition that "( ) 0f x � . This process helps 
identify the critical points where the slope is zero and ensures that these points correspond to a maximum on the 
curve, indicating the mode. 
   

2.7 Skewness and kurtosis

In this research, Al-saiary et al. (2019) employed Bowley's skewness coefficient using quantiles as 

                              � � � � � � � � 1SK B  =  {Q + Q - 2Q Q(34 /44 )1 -2 Q{ (/ 11 // 4/  } )}3 �   

The formula for determining Octiles Kurtosis coefficients, as outlined by (Moors, 1988), can be applied as 

     

Q (0.375) - Q (0.625) + Q (0.875) - Q (0.125)
K =

Q (0.75) - Q (0.25)u
 

3 Parameter estimation
The recommended model's parameters are established using Least Squares, Maximum Likelihood, and Cramer's-von 
Mises approaches. These comprehensive approaches enhance the accuracy and reliability of the model, ensuring that 
it effectively captures the underlying patterns and relationships in the data. 
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3.1 Maximum likelihood estimation 
Maximum likelihood function maximizes the likelihood function to estimate the parameters. Suppose a random 
sample � �1  , ,� � nx x x having size 'n' elements, drawn from MEKwE. In this instance, the log likelihood function 

can be formulated as follow  

(1 ) (1 )

1 1 1

1

( ; , , ) ln ln ( 1) ln{1 }

                      ln{ (1 )(1 )}

x x x
n n n

xe e x e

i i i
n

x x

i

x n n x e xe

xe x e

� � �� �

� �

� � � � � � � �

� �

� �� � �

� � �

�

�

� � � � � � � �

� � �

� � �

�

�
           (14)                                    

With respect to the parameters , ,  and � � � ,we calculate the partial derivatives of equation (14). Next, by setting the 
first-order partial derivatives to zero and solving for the values, we obtain the estimated parameters. When 
differentiating equation (14) with respect to , ,  and � � � , the following expressions are derived: 
 

(1 ) 2 (1 )}( 1)
1 1 (1 )1

(1 ) (1 )2                                  (1 )
1 1 (1 )(1 )

x xi ix e e xxn n i il e x e exi xx ii i xe ee

x xin nx e x x ei ix e ei x xi ii i xe x e

� �
� ���

�
�� ��

� �� �
�

� �
� �

�� �
� � �� �� �� �� � � �� � �� � �� � � �� ��� �

� � ��� � �� �� �� � �� �� � � � �� �� �

�

 

(1 )
ln 1     and

1

x xi in x e en ie
i

� �
�

� �

�� �
�� � �� � �� � �� � �� � �

�
      

1
(1 ) (1 )2( 1) {(1 ) } 1

1

                               (1 ) (1 ) (1 )
1 1

        

x x x xi i i in x x xx e e x e el n i i ii ie x e e e eii

n nx x x x xi i i i ix e e x e e x ei i i
i i

� � � �
� � �� �

� �
� �

� � � � �
� � �

�� �� �� �� � � �� � �� � � � � �� � �� � �� � �
� �� � �� �� � � � � � �� �� �
� �� �� �

2                       { (1 ) } (1 )(1 )
1

n x x xi i ie x x x x e x ei ii i ii

� � �
� � � � �

� � �� �
� � � � � �� � �

� ��

  

 
Finding an analytical solution for these first-order derivatives is not feasible. Therefore, R programming language is 
employed for their solution. 
If we define 

�
ˆ ˆˆ ˆ( , , )� � �� � and ( , , )� � �� � with�  being the parameter vector and 

�

�̂  being the estimated constants, 

then the resultant asymptotic normality can be expressed as � � � �� � 1
3

ˆ 0,N I
�� �� �� � �

� �
. The expression for the 

Fisher's information matrix, symbolized as � �I � , can be formulated in the following manner:  
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� �

2 2 2

2

2 2 2

2

2 2 2

2

.

. .

l l l
E E E

l l lI E E E

l l lE E E

� � � � �

� � � � �

� � � � �

� �� � � � � �� � �
� �� � � � � �� � � � �� � � � � �� �
� �� � � � � �� � �� �� � � � � � � � �� �� � � � �� � � � � �
� �

� � � � � �� � �� �
� � � � � �� �� � � � �� � � � � �� �

 

 
 The Maximum Likelihood Estimator’s asymptotic variance, denoted as � �� � 1

I
�

� ,is of limited value since �  cannot 

be determined. Instead, we can utilize 
�
ˆ( )O �  to symbolize the observed Fisher information matrix. We can derive 

the Hessian matrix �2  by estimating 
�
ˆ( )O �  based on � �I �  in the following manner. 

�

� � �

� �

2 2 2

2

2 2 2

|2 ˆ

2 2 2

2

ˆ( )
.

. .

l l l

l l lO

l l l

� � � ��

� � � ��

� � � � �

���

� �� � � � � �� � �� �� � � � � �� � � � � �� � � �� ��� � � � � �
� �
� � � � � �� �� � �

� � � � � �� � � � � �� �� � � � � �� � � ��� �� � � � � �
� �� �� � � �� � �� �� �� � � �� �� � � � � �� � � � �� � � ��

�

� � �

2                                                 

 
The variance covariance matrix is, 

� �
�

� �ˆ

1

|

ˆ ˆˆ ˆ ˆvar( ) cov( , ) cov( , )
ˆ ˆ ˆ ˆˆcov( , ) var( ) cov( , )
ˆ ˆ ˆ ˆˆcov( , ) cov( , ) var( )

� � � � �

� � � � �

� � � � �
���

�
� �
� �� � � �� � �� � � �� �
� �

�

�

�

2  

In this context, the confidence intervals for α, λ, and β at the 100(1-γ) % level are /2ˆ ˆ. ( )Z Var�� �� , 

/2
ˆ ˆ( )Z Var�� �� , and /2

ˆ ˆ( )Z Var�� �� , respectively. 

3.2 Estimating through the Least-Squares Method (LSE) 

We arrange a series of ordered random variables as 
� � � � � �1 2 nX  X   X� � �� and create a random sample 

� �1 2, ,  ,� nX X X from the probability model described by the function F(.).We then create a function 

( )( ; , , )iK x � � �  by utilizing the cumulative distribution function (CDF) of ordered statistics, denoted as 

( )( )iF X ,
as described in equation (15). 

 � �
2

( )
1

; , , ( )
1

n

i
i

iK x F X
n

� � �
�

� �� �� ��� �
�                       

( ) ( )(1 ) 2
( ) ( )

1
( ; , , ) [{1 } ] ; 0, ( , , ) 0

1
x xi i

n
xe e

i i
i

iK x e x
n

� �
� �� � � � � �

�
� �

�

� � � � �
��                                    (15) 

To ascertain the MEKwE model’s parameters, we can accomplish this by minimizing function (15). This process 
involves calculating the partial derivatives of function ( )( ; , , )iK x � � �  with respect to its parameters up to the 

second order. The first order derivatives are 
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� � � �( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1
(1 ) (1 ) (1 )

( )
1

2 (1 ) 1 1
1

x x x x x xi i i i i i
i i

n
x xxe e xe e xe e

i
i

A ie x e e e e
n

� � � � � �� �
� �� � ����

�

� � ��
�� � � � � �

�

� � �� � � � � �� �� �� �
�  

� � � � � �( ) ( )( ) ( ) ( ) ( )
( ) ( ) (1 )(1 ) (1 )

1
2 1 1 ln 1 ;   and

1

x xx x x x i ii i i i
i i

n
x e exe e e e x

i

K ie e e
n

� �� � � �� �
�� �

�

�� �� �� � � �

�

� � �� � � � �� �� �� �
�

� � � �( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1
(1 ) (1 ) (1 ) 2

( )
1

2 1 } 1 1
1

x x x x x xi i i i i i
i i i i i i

n
x e e x x x xx e e e e

i
i

K ix e e e e e e
n

� � � � � ��
� � � � �� �� �

�

� � ��
� � � � �� � �

�

� � �� � � � � �� �� �� �
�

 
Alternatively, we can obtain the parameters by minimizing function E through weighted least squares estimation 
(LSE).  

 � � � �( ) ( )
2

(1 )

1
;  ,  ,  1

1
x xi i

n
xe e

i
i

iE X w e
n

� �� �� � �
�� �

�

� �� � �� ��� �
�

   
Where,

� �

� � � �
� �

22 11
( ) 1i

i

n n
w

Var X i n i
� �

� �
� �

 

We can obtain expression (17) by utilizing the CDF for order statistics and the weight wi from the preceding 
equation, as demonstrated below. 

          
� � � � � �

� � � �( ) ( )

22
(1 )

1

2 1
; , , 1

1 1
x xi i

n
xe e

i

n n iE X e
i n i n

� � �
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�
� �

�

� � � �� � �� �� � �� �
�         (17) 

3.3 Cramer-Von-Mises (CVM) method 

Minimizing function (18) estimates parameters α, λ, and β using this method for estimation. 

� � � �( ) ( )
2

(1 )

1

1 2 1; , , 1
12 2

x xi i
n

xe e

i

iZ X e
n n

� � �
�� � �

�
� �

�

�� �� � � �� �� �
�                           (18) 

Calculating the partial derivatives of function Z, with respect to α, λ, and β, we find its partial derivatives up to 

second order and solving = 0, = 0, and 0  Z Z Z
� � �
� � �

�
� � �

, this process can be allowed to obtain CVM estimates. First 

order partial derivatives are; 

� �( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

2 1
(1 ) (1 )(1 )

( )
1

2 12 {1 } 1 (1 ).
2

x x x xx xi i i ii i
i i i i i

n
x e e x e e x xe e x

i
i

Z ie e e x e e
n
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� � � �� ����

�

� �� �
� � � � �� �

�

� �� �� � � � � �� �� � �
�  

  � � � �( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )(1 ) (1 ) (1 )

1

2 12 {1 } 1 ln 1 ;    and
2

x x x x x xi i i i i i
i i i

n
x e e x xe e e e

i

Z ie e e
n
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� � ��

�

� � �� � � �� �

�

� �� �� � � � �� �� � �
�  

  � �( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1
(1 ) (1 ) (1 ) 2

( )
1

2 12 {1 } 1 (1 )
2

x x x x x xi i i i i i
i i i i i i

n
x e e x x x x xe e e e

i
i

Z ie e e x e e e
n

� � � � � � �
� � � � � ��� �

�

� � � �
� � � � � �� �

�

� �� �� � � � � �� �� � �
�  

4 Real data analysis 
To test the applicability of the data, we have taken a real data set. The dataset comprises daily COVID-19 death 
counts in Nepal during the initial wave from January 23, 2020, to December 24, 2020, as reported by the 
(Worldometer, 2023). During first wave, there were 1808 deaths at the end of 24 December 2020. In this study we 
have used the daily deaths more than 1 death. The sample contains the data of 153 days with total deaths of 1777. 
2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 4, 2, 5, 5, 3, 2, 4, 4, 8, 4, 4, 3, 2, 3, 7, 6, 6, 11 , 9, 3, 8, 7, 11, 8, 12, 12, 14, 7, 11, 12, 6, 14, 
9, 9, 11, 6, 6, 5, 5, 14, 9, 15, 11, 8, 4, 7, 11, 10, 16, 2,7, 17, 6, 8, 10, 4, 10, 7, 11, 11, 8, 7, 19, 9, 15, 12, 10, 14, 22, 9, 
18, 12, 19, 21, 12, 12, 18, 8, 26, 21, 17, 13, 5, 15, 14, 11, 17, 16, 17, 23, 24, 20, 30, 18, 18, 17, 21, 18, 22, 26, 15, 13, 
13, 6, 9, 17, 12, 17, 22, 7, 16, 16, 24, 28, 23, 23, 19, 25, 29, 21, 9, 13, 16, 10, 17, 20, 23, 14, 12, 11, 15 ,9, 18, 14, 13, 
6, 16, 12, 11, 7, 3, 5, 5. 
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Exploratory data analysis: It provides insights into the structure and characteristics of the data. For getting some 
information about nature of the data and hazard rate curve, we have plotted boxplot and TTT plot of the dada 
considered. The empirical expression for the TTT plot is provided below. 
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In this scenario, ( : ) ( 1, 2, ..., )i ny i r� represents sample order statistics, where 'r' varies from 1 to 'n', the ‘total 

time on test’ graphic can take on various forms. Aarset (1987) demonstrated that when the curve tends towards a 
straight diagonal function, a constant failure rate is applicable. If the curve is convex or concave, the failure rate 
function is consistently increasing or decreasing, respectively, and is considered appropriate. In cases where the 
failure rate function exhibits both convex and concave characteristics, the U-shaped format is suitable; otherwise, a 
unimodal failure rate function is more appropriate. The TTT data plot's concave form indicates an increasing hazard 
rate for the proposed model. This information aids in selecting an appropriate failure rate function, ensuring a more 
accurate representation of the underlying dynamics of the system under consideration. 

 
Fig 2. Boxplot (on the left) and TTT plot (on the right) 

Table 1. Summary Statistics 
Minimum  Q1 Median Mean Q3 S.D. Skewness Kurtosis Maximum 

2 6 11 11.616 16 6.7591 0.508327 2.547717 30 
The above findings indicate that the data exhibits positive skewness and deviates from a normal 
distribution in terms of its shape. Understanding these characteristics is crucial for appropriate data 
analysis and interpretation. 
4.1 Estimated Parameters:   
Table 2 presents model parameters estimated through the MLE, LSE and CVM methods. Parameters are estimated 
using optim () function of R language programming. Table also contains the standard errors. 

Table 2: Parameters' Estimated Values and Their Standard Errors 
Parameters MLE LSE CVM 
Alpha 0.0319(0.0118) 0.0353 (0.1554) 0.0356(0.1555) 
Lambda 0.0681(0.0148) 0.0595(0.1403) 0.0599(0.1412) 
Beta 0.7986(0.1388) 0.6799(1.1367) 0.6891(1.1569) 
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We've assessed the model's validity by creating P-P and Q-Q plots to examine its performance and 
accuracy. The plots demonstrate that the model accurately captures the data.  
 

 
 Figure 2: P-P plot (Left) and Q-Q plot (Right) of the model 

 

We created histograms and display fitted density curves on the left panel of Figure 3 to visually assess the 
goodness of fit. The Figure 3's right panel showcases both the empirical CDF and the fitted CDF of the 
model.  

   
Figure 3: Histogram versus Pdf (Left panel) and ECDF versus Fitted CDF (Right panel) 

Table 3 compares the information criteria values corresponding to different methods of 
estimation used in study. In essence, information criteria serve as tools for selecting models by 
comparing their fit to the same data. It's important to note that the models under comparison 
don't have to be nested. These criteria are measures of model fit based on likelihood, 
incorporating a penalty for complexity, specifically in terms of the number of parameters. 
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Different information criteria vary in the form of the penalty they apply and may favor different 
models. 

Irrespective of the specific information criterion used, when comparing values across multiple 
models, smaller criterion values indicate a better and more parsimonious fit. In this context, we 
considered Akaike's, Bayesian, Hannan-Quinn, and Corrected Akaike's Information Criteria. 
Among these, the Maximum Likelihood Estimation (MLE) method yielded the lowest 
information criterion values, suggesting a superior fit compared to other methods. Therefore, 
based on the information criteria analysis, the MLE method emerges as a robust choice for 
modeling the given data.  
Table 3: Information criteria corresponding to methods of estimation 

Methods LL AIC BIC CAIC HQIC
MLE -496.5925 999.185 1008.276 999.340 1002.878 
LSE -497.2673 1000.535 1009.626 1000.696 1004.228 
CVM -497.1079 1000.216 1009.307 1000.377 1003.909 

The minimum log-likelihood (LL) and information criteria values linked to Maximum Likelihood 
Estimation (MLE) suggest that MLE offers a superior fit to the data in comparison to the Cramér-von 
Mises (CVM) and Least Squares Error (LSE) estimation approaches. We used the Kolmogorov-Smirnov, 
Cramer-von Mises, and Anderson-Darling tests to evaluate how well the data fits. All the data analysis 
was conducted using the R programming language. The test statistics and corresponding p-values for 
various estimation techniques are presented in Table 4, revealing that the CVM method exhibits lower test 
statistics values with higher p-values for A2 and W. Additionally, the MLE method demonstrates lower 
test statistics values with higher p-values for the Kolmogorov-Smirnov test. These observations enhance 
our comprehension of how various estimation methods perform in accurately capturing the inherent 
characteristics of the dataset. 

Table 4: Test statistics and p values corresponding to methods of estimation 
Methods KS( p-values) A2(p- values) W(p-values)
MLE 0.0488(0.8586) 0.0597(0.8167) 0.5208(0.7254) 
LSE 0.0555(0.7344) 0.0413(0.9267) 0.4407(0.8074) 
CVM 0.0539(0.7654) 0.04087(0.9292) 0.4268(0.8215) 

4.2 Comparative study of the model 
To demonstrate the suitability of our proposed model, we conducted a thorough comparison with eight other 

prominent probability models found in the existing literature. These selected models are as follows: 

1. Exponentiated Generalized Odd Lomax Exponential (EGOLE) distribution (Telee et al., 2023) 

2. Exponentiated Odd Lomax Exponential (EOLE) distribution (Dhungana & Kumar, 2022) 

3. Lindley Inverse Weibull (LIW) distribution (Joshi & Kumar, 2020b) 

4. Half Logistic Nadarajah Haghighi (HLNHE) distribution (Joshi & Kumar, 2020a) 

5. Lomax Exponentiated Weibull (LEW) distribution (Ansari and Nofal, 2020) 

6. Odd Lomax Exponential (OLE) distribution (Ogunsanya et al., 2019) 

7. Exponentiated Generalized Inverted Exponential (EGIE) distribution (Oguntunde et al., 2014) 

8. Generalized Inverted Generalized Exponential (GIGE) distribution (Oguntunde et al., 2015) 

For our comparative analysis, we estimated the parameters and standard errors of these models using the same 

dataset. The values of the estimated parameters for the  recommended model are demonstrated in Table 5 for 

reference. 
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Table 5: The estimated parameter values and their corresponding standard errors using MLE for both the 
proposed and competing models 

Models  �̂  �̂  �̂  �̂  �̂  �̂  

MEKwE 0.0319(0.0118 ) 0.7986(0.1388) 0.0681(0.0148)    
EGOLE 54.800(156.0923) 38.711(106.9083) 0.053(0.0192)  1.682(0.3362)  
EOLE 0.0266(0.0096)  28.6034(4.9965) 7.5254(5.2967) 1.5457(0.1237)  
LIW 8.6377(0.8695) 0.7461(0.1045)   4.1896(1.4514)  
HLNHE 0,04697(-) 1.6400(0.2991) 1.33342(-)    
LEW 6.8995(0.00049) 1.05636(-)   0.0860(0.0070)  
GIGE 2.3108(0.3062)  4.8503(-)   2.4017(-) 
EGIE 7.6227(-) 0.2307(0.0186) 44.14876(-)    
OLE 3.6466(0.9066) 14.6636(4.1751)   0.1264(0.0187)  

 
We evaluated the model's goodness of fit to the data using multiple information criteria, as outlined in Table 6. 
These statistical measures, namely Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC), 
Hannan Quinn Information Criterion (HQIC), and Corrected Akaike Information Criterion (CAIC), are employed 
for model selection and evaluation across diverse fields. The proposed model exhibits the lowest log likelihood 
value, surpassing all others except for EGOLE. In terms of information criteria values (AIC, BIC, CAIC, and 
HQIC), the proposed model MEKwE consistently records the lowest values. These lower values across various 
metrics imply a superior goodness of fit for the proposed model. This reinforces its appropriateness for accurately 
representing the data when compared to alternative models, including EGOLE. In summary, the proposed model 
demonstrates a superior fit to the dataset compared to competing models. 
Table 6: Log likelihood and values of information criteria  

Models  LL AIC BIC CAIC HQIC 
MEKwE -496.5925 999.185 1008.276 999.340 1002.878 
EGOLE -496.4853 1000.971 1013.092 1001.241 1003.433 
EOLE -496.8049 1001.609 1013.732 1001.879 1006.534 
LIW -514.9643 1035.929 1045.020 1036.090 1039.622 
HLNHE -506.3778 1018.756 1027.847 1018.917 1022.449 
LEW -512.8346 1031.669 1040.761 1031.830 1035.362 
GIGE -520.2300 1046.460 1055.551 1046.621 1050.153 
EGIE -507.7668 1021.534 1030.625 1021.695 1025.227 

We assessed how well the recommended model fits compared to the competing models. The histogram 
and fitted density curve corresponding to MLE methods are plotted and displayed in left panel of the 
figure5. The empirical cumulative distribution function (ecdf) curve and the fitted cumulative distribution 
function (cdf) curve for each competing model, as well as the proposed model, are shown in the right 
panel of Figure 5. Analyzing these curves in the right panel allows for a thorough assessment of the 
goodness-of-fit for both the existing models and the proposed one. This examination assists in evaluating 
their respective adequacy in capturing the underlying patterns in the data. 
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Figure 5: Histogram versus fitted pdf (left panel) and ecdf versus fitted cdf (Right panel) 

5 Conclusion 
We've developed a novel probability model named the Modified Extended Kumaraswamy Exponential Distribution 
in this study. Some properties like hazard rate, survival rate, quantile function etc are studied. Three methods of 
parameter estimation are used and the suitability of methods is compared using three methods of information criteria 
as well as by three methods goodness of fit statistics. Probability density curves and Hazard rate curves displayed. 
The hazard rate curves exhibit a monotonic increase, followed by a decrease, a period of constancy, constancy 
followed by an increase, and a J-shaped pattern across various parameter sets.   We have utilized a real dataset on 
daily COVID-19 death counts in Nepal during the initial wave from January 23, 2020, to December 24, 2020 to 
assess the model's suitability. In this study, we have examined eight additional probability models from the existing 
literature to assess how well our proposed model compares to these competing models. We have also evaluated 
various information criteria values using four different methods. The results of our study reveal that the suggested 
model outperforms the other models we examined in terms of its capacity to accurately represent the data. We have 
plotted histograms and fitted density curves corresponding to Maximum Likelihood Estimation (MLE) methods. 
Additionally, we present cumulative distribution function (CDF) curves for both empirical and fitted distributions 
for all competing models, as well as for the proposed model. This graphical representation aids in assessing how 
well the proposed model aligns with the observed data and its ability to capture the underlying distribution. We 
conducted all the calculations and generated the graphs using the R programming language. 
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